Evolutionary Influences on Proteins
نویسنده
چکیده
0001 The strings of amino acids that make up a protein are specifi ed by the sequence of nucleotides in the coding region of a gene. However, genes also contain nucleotides that don’t contribute to the sequence of a protein, in noncoding areas called introns. Before the protein can be generated, the introns must be removed and the coding parts (called exons) must be spliced back together. Splice-enhancer domains—exon sequences near the intron–exon boundary—help to ensure that genes are spliced at the correct points. They also code for specifi c amino acids within the protein, indicating that they must serve two functions. In a new study, Joanna Parmley, Laurence Hurst, and colleagues asked what effect this dual functionality has on the evolution of these sequences. They found evidence that the necessity for splice enhancers near the intron–exon boundaries causes these sequence regions to evolve at a lower-than-average rate. The region near to intron–exon boundaries is also more likely than expected to contain nucleotide sequences that are used in splice-enhancer regions—a condition that results in a skewed amino acid content in the corresponding parts of the encoded proteins. Thus, the amino acid sequence of a protein might depend not only on its biological function, but also on the presence of splice enhancers. The authors began by analyzing the use of different amino acids near intron– exon boundaries. Most amino acids were either more or less abundant than expected by chance in these regions. The more-abundant ones were encoded by nucleotide sequences found in splice enhancers. When the authors analyzed amino acids that can be encoded by several different triplets of nucleotides (each amino acid is encoded by three nucleotides), they found that the increased abundance of the amino acids probably resulted from a preference for specifi c nucleotides, rather than a direct preference for those amino acids. If there is selection pressure to conserve splice enhancers—that is, if the splice enhancers confer some sort of evolutionary or fi tness benefi t and thus are preserved by natural selection—one would expect these regions to evolve more slowly than other parts of the genetic sequence. By comparing splice-enhancer sequences in mouse and human genes, the authors showed that the sequences are in fact conserved—and that smaller exons, in which more of the nucleotides are close to an intron–exon boundary, also evolve more slowly. The rate of evolution of a protein is also constrained by other factors. For example, “housekeeping” genes—those whose proteins are essential for cellular function and are expressed in many tissues—tend to evolve slowly, whereas nonessential genes (whose functions might be reproduced by another, similar genes) often evolve more quickly. The results of this study show that the proportion of a gene that falls near intron–exon boundaries has a strong effect on the rate of protein evolution when compared with these other factors. An interesting insight into the possible functional effects of splice enhancers comes from looking at genes that have lost their introns. Such genes show markedly accelerated evolution in the regions that originally fl anked intron–exon boundaries. This indicates that a selection constraint— presumably to maintain correct splicing by conserving splicing-enhancer domains—has been released following the loss of introns (because the splice enhancers are no longer needed). is fi nding also implies that the need to conserve the splice enhancers in the original proteins meant that the proteins were not optimized for their biological functions, but rather might have evolved a “compromise” sequence that could fulfi l both roles. The idea that the evolution of a gene can be so strongly infl uenced by something other than the biology of the protein it encodes is an intriguing one that might have consequences for gene therapy and for protein engineering, as well as for our understanding of protein evolution. Further work will be required to investigate whether other features, apart from splice-enhancer regions, also infl uence nucleotide and amino acid use near the boundaries between coding and noncoding gene segments.
منابع مشابه
An Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملDetermining Difference in Evolutionary Variation of Bacterial RecA proteins vs 16SrRNA Genes by using 16s_Toxonomy Tree
Background and Aims: The rate of variation in various genes of a bacterial species is different during evolution. Therefore, in systematic bacterial studies many researchers compare the phylogenetic tree of a particular gene to the standard tree of an rRNA gene. Regarding the importance of 16SrRNA gene and the evolutional process of RecA protein family, we investigated the changes in the select...
متن کاملSelection on gamete recognition proteins depends on sex, density, and genotype frequency.
Gamete recognition proteins can evolve at astonishing rates and lie at the heart of reproductive isolation and speciation in diverse taxa. However, the source of selection driving this evolution remains unknown. We report on how the sperm bindin genotype influences reproductive success under natural conditions. An interaction between genotype frequency and spawning density determines how sperm ...
متن کاملDynamic sensitivity and nonlinear interactions influence the system-level evolutionary patterns of phototransduction proteins.
Determining the influence of complex, molecular-system dynamics on the evolution of proteins is hindered by the significant challenge of quantifying the control exerted by the proteins on system output. We have employed a combination of systems biology and molecular evolution analyses in a first attempt to unravel this relationship. We employed a comprehensive mathematical model of mammalian ph...
متن کاملThe evolutionary landscape of functional model proteins.
To study the distinct influences of structure and function on evolution, we propose a minimalist model for proteins with binding pockets, called functional model proteins, based on a shifted-HP model on a two-dimensional square lattice. These model proteins are not maximally compact and contain an empty lattice site surrounded by at least three nearest neighbors, thus providing a binding pocket...
متن کاملPleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviors
It is increasingly apparent that genes and networks that influence complex behavior are evolutionary conserved, which is paradoxical considering that behavior is labile over evolutionary timescales. How does adaptive change in behavior arise if behavior is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007